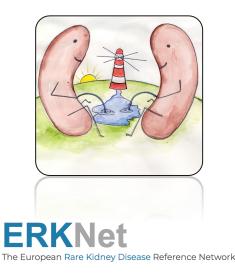
Genetic testing in the diagnosis of chronic kidney disease


Course on Genetics and Kidney diseases Brussels 11 November, 2022

Nine Knoers Department of Genetics

WGIKD Working group Working Group on Inherited Kidney Disorders

Nephrol Dial Transplant (2022) 37: 239–254 doi: 10.1093/ndt/gfab218 Advance Access publication 15 July 2021

Genetic testing in the diagnosis of chronic kidney disease: recommendations for clinical practice

Nine Knoers¹, Corinne Antignac², Carsten Bergmann^{3,4}, Karin Dahan^{5,6}, Sabrina Giglio^{7,8}, Laurence Heidet⁹, Beata S. Lipska-Ziętkiewicz lo^{10,11}, Marina Noris¹², Giuseppe Remuzzi¹², Rosa Vargas-Poussou lo¹³ and Franz Schaefer¹⁴; for the ERA Working Group on Inherited Kidney Disorders (WGIKD), which is an official body of the ERA (European Renal Association), and the Molecular Diagnostics Taskforce of the European Rare Kidney Disease Reference Network (ERKNet) Received: 5 April 2022 Revised: 2 July 2022 Accepted: 18 August 2022

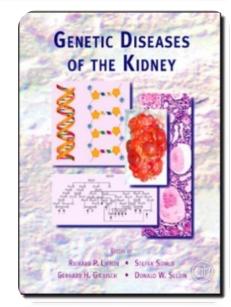
DOI: 10.1002/ajmg.c.31995

REVIEW ARTICLE

medical genetics C WILEY

Review of genetic testing in kidney disease patients: Diagnostic yield of single nucleotide variants and copy number variations evaluated across and within kidney phenotype groups

Laura R. Claus¹[©] | Rozemarijn Snoek¹[©] | Nine V. A. M. Knoers² Albertien M. van Eerde¹[©]

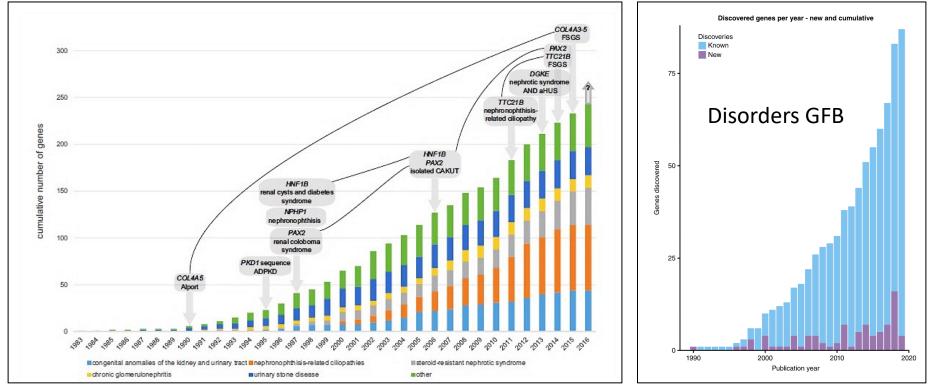

KDIGO executive conclusions	www.kidney-international.org
Genetics in chronic kidney disease: conclusions	() Check for updates
from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference	OPEN
KDIGO Conference Participants ¹	

Monogenic diseases underestimated, but important cause chronic kidney disease (CKD)

Monogenic kidney disease:

> 70 % of children progressing to renal-replacement therapy

> 10-15% of adults progressing to renal-replacement therapy



Mutations in > 600 genes associated with inherited kidney diseases Genetic testing increasingly being used in diagnostic process

Scientific impact: discovery novel disease genes

Acceleration molecular insights into aetiology of genetic kidney disorders, many of them rare disorders

van Eerde et al., KI 2016

Li et al., CJASN 2020

Different testing modalities and their current indications in nephrology

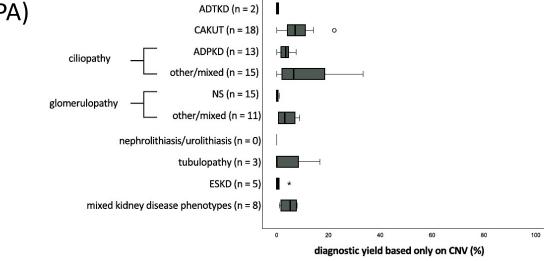
Test	Indications	Examples
Sanger sequencing	Minimal locus heterogeneity	Fabry disease (GLA)
		Cystinosis (CTNS)
CGH/SNP array	Large copy number variants (CNVs)	CAKUT
MLPA	suspected	Nephronophthisis (NPHP1)
Targeted phenotype-	Disorders with locus heterogeneity	Steroid resistant nephrotic syndrome
associated gene panel		(SRNS)
	Disorders with overlapping phenotypes	Hereditary tubulopathies
Targeted ES (virtual gene		
panel)	Disorders with common pathways	Complement-related disorders
ES	Phenotype indistinct & underlying	Unexplained kidney failure
	cause unknown	
	Second tier test after gene panel testing	
	(open up exome)	
GS	Research for unsolved cases after WES	ADPKD (<i>PKD1</i>)
	Emerging clinical use	

Limitations gene testing using MPS gene panels or ES

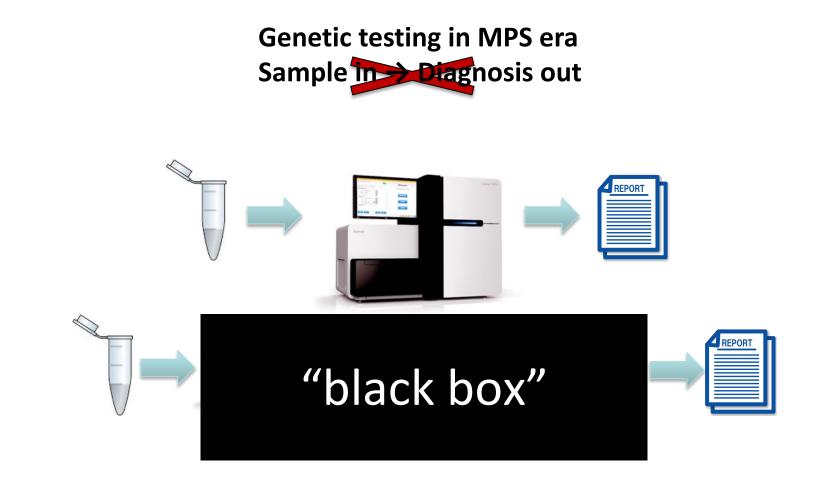
Reason	Examples
Phenocopies may be missed	Mutations <i>CTNS</i> (cystinosis), <i>AGXT</i> (primary hyperoxaluria), <i>GLA</i> (Fabry) can mimic SRNS
Detection large copy number variants (CNVs) from gene panels/ES data challenging; specific CNV detection algorithms not automatically performed in diagnostic setting	<i>HNF1B</i> and <i>NPHP1</i> full gene deletions (CAKUT and nephronophthisis, respectively)
Variants in some genomic regions poorly discovered with MPS gene panels or ES	High GC-content in first exon COL4A3 (Alport syndrome)
	PKD1 (ADPKD) has high GC-content and sequence homology with
	six pseudogenes located nearby
Some pathogenic variants not discovered by any of the MPS-based techniques	Cytosine insertion in variable-number tandem repeat (VNTR) sequences <i>MUC1</i> (MUC1-ADTKD)
Variants in non-coding (intronic or regulatory) regions or imprinting defects not detected	Deep intronic mutations in DGKE (aHUS)
	Imprinting defect Beckwith Wiedemann syndrome

Copy number variant (CNV) detection in diagnostics

CNVs: Structural variations in genome of individual in form of gains (duplications) or losses (deletions) of DNA fragments


CNVs not easily picked up by MPS-based gene panels or ES

- Sophisticated bioinformatic tools (i.e. ExomeCopy, ExomeDepth) necessary to detect those large CNVs from gene panel or ES data
- Not yet routinely used in all diagnostic laboratories


Preferred methodologies for routine diagnostics of large CNVs in many labs:

- Microarray-based technique (CGH- or SNP-arrays)
- Multiplex ligation-dependent probe amplification (MLPA)

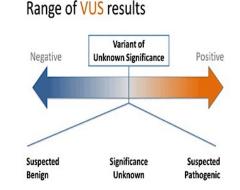
Systematic literature search (115 articles): CNVs are important cause for genetic renal diseases

Challenge: interpretation identified variants

Pathogenicity identified variants?

All testing and molecular classification in accredited molecular genetics laboratories In silico tools for predicting pathogenicity (i.e. SIFT, Polyphen) < 80% accuracy

Interdisciplinary expert boards (including nephrologists, clinical geneticists, molecular biologists) assembled to discuss potential genetic diagnostic findings


American College of Medical Genetics and Genomics (ACMG) variant classification

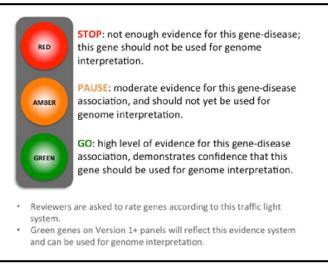
Most difficult outcome: class 3, variants of unknown significant (VUS) Local hospital policies differ whether or not to disclose VUS to patients

ACMG recommendations:

- VUS should not be used in clinical decision-making
- Efforts to resolve classification (i.e. segregation analysis, functional studies, data sharing)

Class	Description		
1	Clearly not pathogenic		
2	Unlikely to be pathogenic		
3	Unknown significance (VUS)		
4	Likely to be pathogenic		
5	Clearly pathogenic		

Pathogenicity identified variants?


Pathogenicity of some variants previously reported as pathogenic mutations questionable with available knowledge of large databases (i.e. gnomAD)

Consult updated clinical variant databases:

- ClinVar https://www.ncbi.nlm.nih.gov/clinvar/
- LOVD https://www.lovd.nl

Curation of data:

- **ClinGen** (https://clinicalgenome.org): specific clinical domain groups/expert panels helpful in defining clinical relevance identified genes
- Genomics England PanelApp/PanelApp Australia: Crowd-sourcing tools to allow gene panels to be shared, downloaded, viewed, and evaluated by scientific Community

https://panelapp.genomicsengland.co.uk/

Increasing clinical impact of MPS-based genetic testing

Establish diagnosis: end diagnostic odyssey

- Bringing peace of mind to family
- Avoiding further expensive and fruitless testing (may obviate need kidney biopsy)
- Reclassification clinical/histological diagnosis

Diagnostic yield significantly increased with MPS-based techniques

Overall **diagnostic yield** in patients with presumably known and unknown causes of CKD:

- 30% in paediatric cohorts
- 6-30% in adult cohorts

Diagnostic yield targeted ES in adult CKD

3000 adult CKD patients, >21 years of age (two cohorts)

>ES with prioritization variants in 625 nephropathy-associated genes

> Diagnostic yield 9.3%, encompassing 66 monogenic disorders

Clinical Diagnosis	Sequencing Performed number of	Diagnostic Variants Present	Diagnostic Yield percent
Congenital or cystic renal disease	531	127	23.9
Glomerulopathy	1411	101	7.2
Diabetic nephropathy	370	6	1.6
Hypertensive nephropathy	319	8	2.5
Tubulointerstitial disease	244	11	4.5
Other	159	6	3.8
Nephropathy of unknown origin	281	48	17.1
Total	3315	307	9.3

Diagnostic yield targeted ES in adult CKD

	ES-based MPS panel n=nephropathy associated gene	/ -	Total diagnostic yield %	wi	Diagnostic yield thin tested gro D unknown ori (%)	up
1 (92) 58% familial	287		23		56	
2 (3000)	625		9.3		17.1	
3 (114) 68% familial 14% extrarenal	478		37		47	

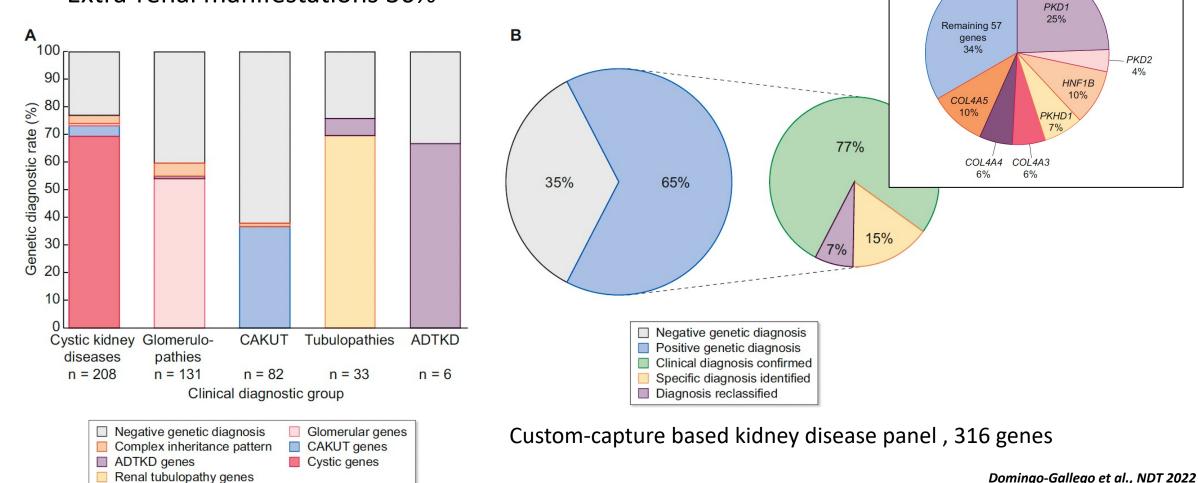
Diagnostic yield influenced by: sample size, inclusion criteria, MPS approach, selection genes

All research cohorts !

Important points

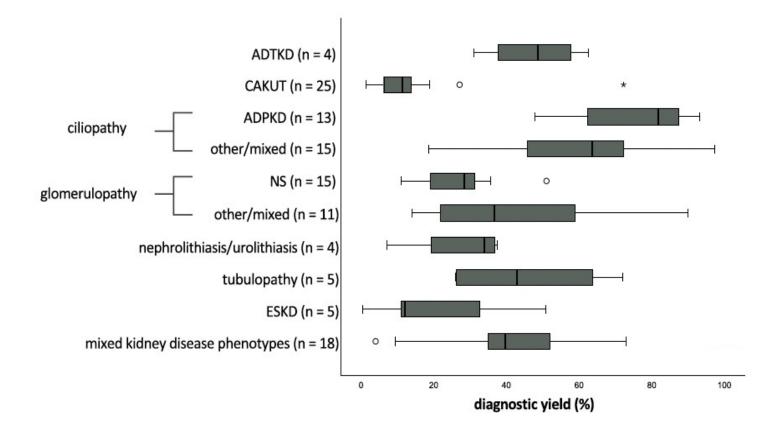
- In study 3 diagnostic yield not different between cases with childhood-onset and adult-onset CKD
- 10-22% reclassification clinical/pathological diagnosis

Predictors high yield



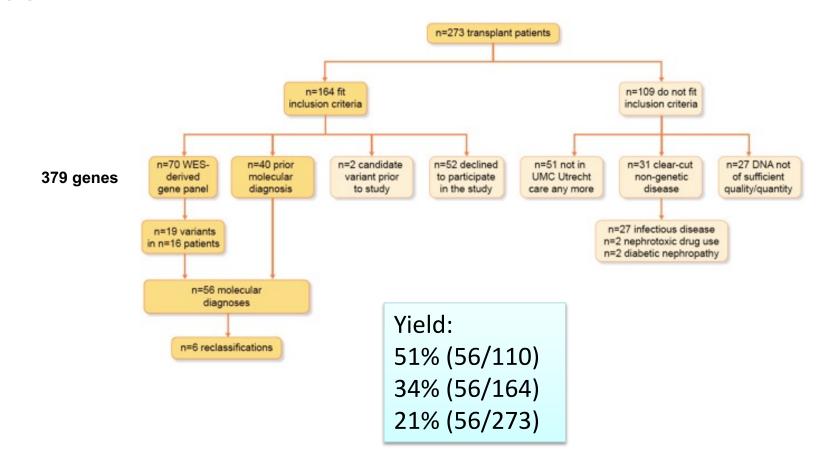
Cocchi et al., CJASN 2020

Diagnostic yield genetic testing clinical study


460 patients from different Spanish hospitals suspected of monogenic disease

- Early onset CKD (0 month-30 years)
- Family history 49%
- Extra-renal manifestations 36%

Overall diagnostic yield genetic testing 115 studies


Systematic literature search (115 articles)

Test viability "genetics-first" approach for CKD in daily practice

Inclusion: kidney transplant recipients with first kidney transplant at age <50 and without clear-cut non-genetic disease

No selection for: familial cases, cases with very early onset, phenotypes with high likelihood of underlying genetic cause

Snoek et al., NDT 2022

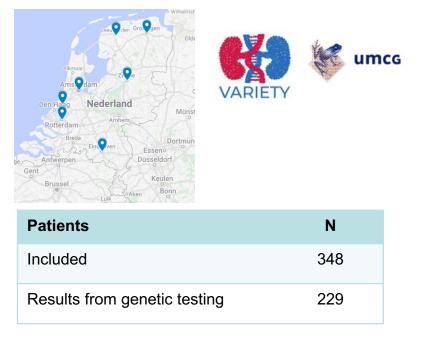
Added value genetic testing to renal biopsy

Molecular diagnosis	Original histological diagnosis	Reexamined histological diagnosis	Likelihood of MGKD based on reexamined biopsy
NPHS2	FSGS	FSGS	Not determinable due to lack of IF and EM
COL4A3	Primary FSGS	FSGS	Not determinable due to lack of IF and EM
INF2	Secondary FSGS	Secondary FSGS	Not likely
NPHS2	FSGS, not all classifications for Finnish type	Diffuse mesangial sclerosis	Very likely
PAX2	Secondary FSGS	Secondary FSGS	Not likely
COL4A3	Possibly Alport syndrome	Alport syndrome	Very likely
COL4A4	IgA nephropathy	IgA nefropathy. Oxford- score: M1, E1, S1, T1	Not likely
CFTR	Nodular glomerulosclerosis	Diabetic nephropathy	Not likely

Dutch nationwide prospective VARIETY cohort study

Determine diagnostic yield of MPS-based gene panel testing in patients with unexplained CKD in routine healthcare setting

Nationwide cohort study

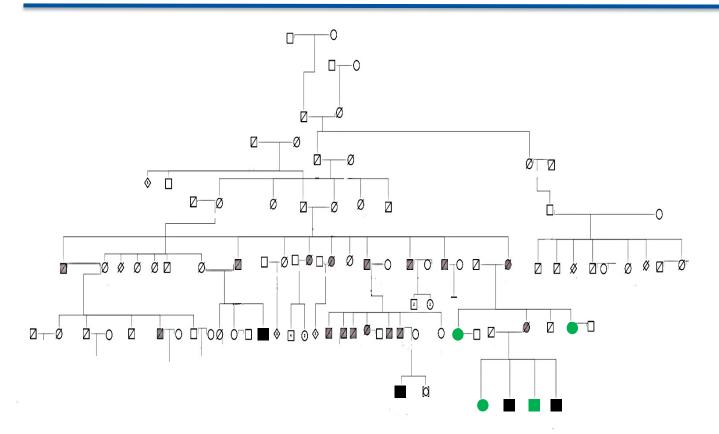

- Patients can be included from every hospital in the Netherlands
- Active screening in 7 hospitals

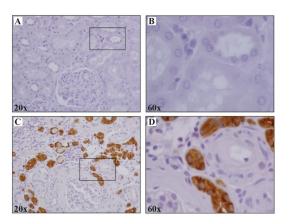
Patients

- eGFR <60 mL/min/1.73 m² before age of 50 years
- CKD due to unknown/unclear cause

Clinical and demographic data collection

- Electronic health record
- Questionnaire




Interim results:

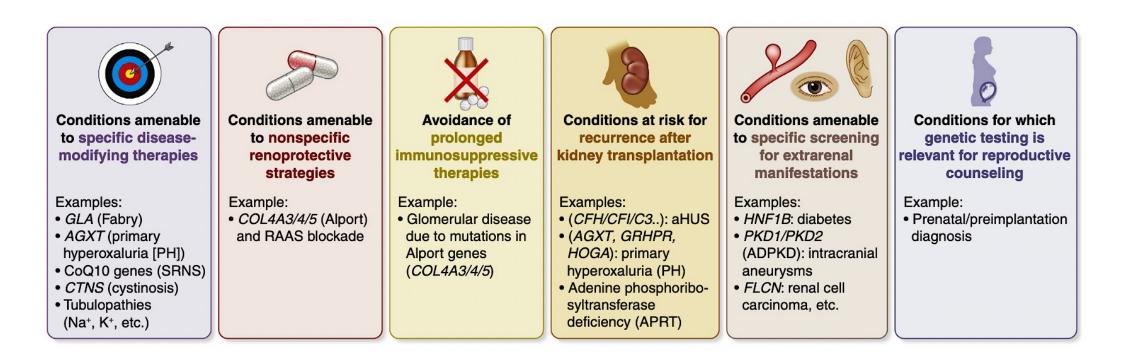
- Diagnostic yield 19%
- VUS 12%
- Carrier 11%

Most involved genes: COL4A3-4-5, NPHP1

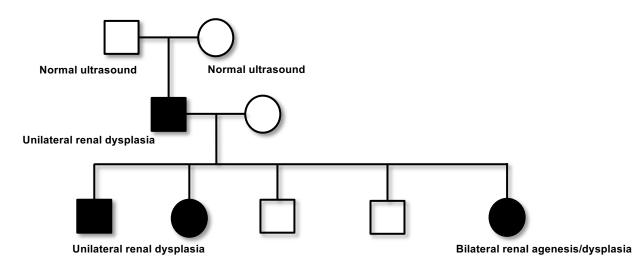
Unexplained early-onset kidney failure in 60 years known large Dutch family finally explained

Immunohistochemical detection MUC1-fs in kidney tissue from control and patient

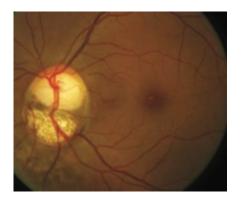
ES and filtering for 141 CKD genes \rightarrow *MUC1* frameshift variant p.(Ser119Profs*119) Classical *MUC1* cytosine insertion analysis: negative


Autosomal Dominant Tubulo-Interstitial Kidney Disease (ADTKD)- MUC1

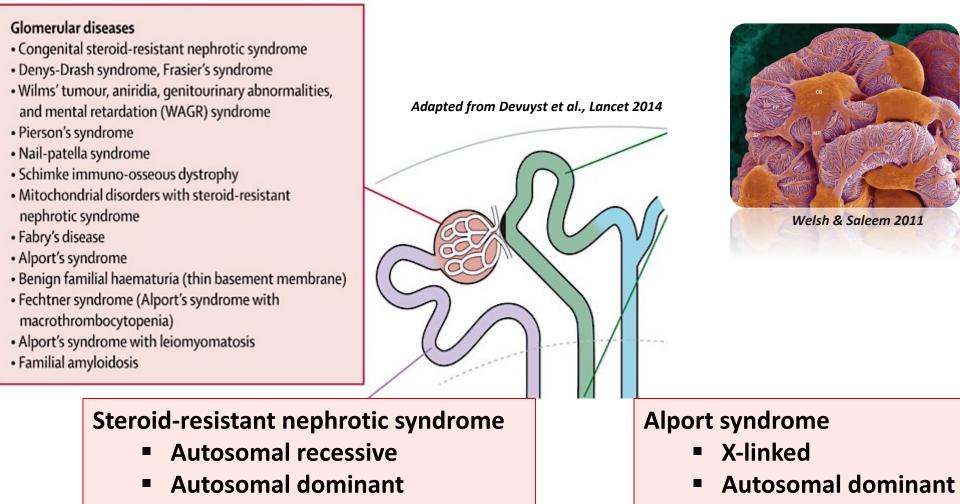
de Haan et al., submitted


Increasing clinical impact of MPS-based genetic testing in CKD

Establish diagnosis: end diagnostic odyssey


Clues for management

Clinical impact genetic diagnosis in CKD: screening for extrarenal manifestations



ES: de novo pathogenic PAX2 mutation

Ophthalmological examinations: optic nerve coloboma's in *PAX2* mutation carriers **Renal coloboma syndrome**

Clinical impact genetic diagnosis in CKD: prognosis and management for glomerulopathies

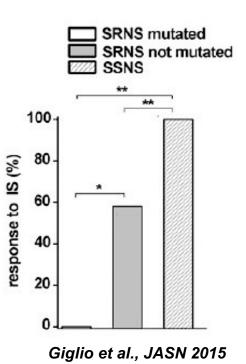
Autosomal recessive

3 genes

- X-linked
- > 50genes

Clinical impact genetic diagnosis in CKD: prognosis and management for glomerulopathies (1)

Prognosis


Type *COL4A* mutation in patients with Alport syndrome: information regarding renal and extrarenal (e.g. hearing loss) phenotypes

Prevent prescription of ineffective therapy

Immunosuppressive drugs should not be given to patients with genetic glomerulopathies. Instead RAAS-inhibition for nephroprotection

Recommendation regarding (change) in therapy

Identification pathogenic variants in genes co-enzyme Q10 biosynthesis pathway (i.e. *COQ6, ADCK4*) in patients with rare form of nephrotic syndrome \rightarrow treatment with co-enzyme Q10 beneficial

Clinical impact genetic diagnosis in CKD: prognosis and management for glomerulopathies (2)

Palliative care:

Case own practice: Severely ill female neonate with congenital nephrotic syndrome, severe brain abnormalities, hypothyroidism, facial dysmorphism ES: Galloway-Mowat syndrome (nephrosis-microcephaly syndrome) → Palliative care introduced

Predicting post-transplant recurrence kidney disease

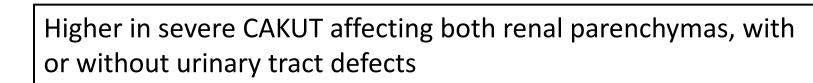
Very low in genetic glomerulopathies

In setting of kidney transplantation/eligibility of living related donors

Donor screening of diseases with dominant transmission/ intra-familiar variability and incomplete and age-dependent penetrance (i.e. NPHS2, COL4A3/A4/A5)

Indications genetic testing CKD

Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference


- Clinical work indicates possibility genetic disease:
 - High prevalence of monogenic subtypes in clinical category (cystic disease/SRNS)
 - Positive family history
 - Early age of onset
 - Multisystem features
 - Consanguinity
 - Possibility of identifying disease amenable to targeted treatment (Fabry)
- At-risk family member (potential kidney donor)
- Alternative to kidney biopsy (patients with high-risk biopsy-related complications)
- CKD of unknown/unclear aetiology
- Information to guide continuation of immunosuppressive therapy
- Genetic testing can provide prognostic information (Alport)
- Diagnosis diseases with high risk of recurrence in kidney allografts (aHUS/TMA)

Genetic testing in CAKUT ?

Predictors high diagnostic yield

Kidney disease sub-type

amily history o kidney disease

Posterior urethral valves/isolated ureteral phenotypes rarely associated with known monogenic cause: no standard genetic testing

Adapted from Cocchi et al., CJASN 2020

No one-size-fits all approach:

Consider:

or consanguinity

- Potential diagnostic yield/clinical clues for monogenic CAKUT
- Test's costs
- Payer's situation
- Ethical issues (unsolicited findings)

Genetic testing CKD of unknown/unclear aetiology

Who?

Patients with severe CKD/ESKD

- onset before the age of 50
- clear-cut non-genetic diagnosis (e.g. acute nephrotoxicity, diabetec nephropathy, infectious nephropathy) has been excluded

What?

Tiered exome-based diagnostic approach

- large targeted multi-gene panel, involving all known nephropathy genes
- open up exome backbone in case no causative variant(s) is (are) identified

Why?

- Management
- Family planning/Reproductive options
- Decisions about transplantation
- Testing family members at risk
- Eligibility living-related kidney donor

Importance of pre- and post-test counselling

Recommendations pre-test genetic counselling

- Inform patients on possible outcomes of genetic test, including the possibility test may not give any positive results
- Emphasize that a genetic diagnosis may, but not always will lead to change in management and/or to prognostic information
- Mention possible psychosocial consequences of receiving a definite diagnosis, including consequences for prognosis, and the chances of developing extrarenal symptoms in some disorders
- Mention possible implications for insurability: i.e. Alport syndrome genetic testing in patient with mild hematuria
- Discuss possibility of VUS and unsolicited findings (UFs), and their potential implications, including those for family members, explain the hospital's policy with regard to these findings and emphasize the patient's right to not receive these results

Unsolicited findings (UFs) from MPS-based genetic testing

- Unanticipated findings not related to initial reason for genetic testing
 - Overall frequency UFs: 0,58%
 - 0,03% when restricted disease gene panels were used
 - 1,03% when exome was analysed
- Could be predictive of risk for other diseases, which may or may not be medically actionable
- May also have implications for family members (i.e. *BRCA1/2* mutations)
- Reporting UFs subject of ongoing debate:
 - **Recommendation ACMG**: identification and return of IFs from a minimum of 59 actionable genes, unless patients opt out
 - Recommendations European Society of Human Genetics & Canadian College Medical Geneticists: restrict testing to regions of genome linked to patient's phenotype in order to avoid detection of UFs
 - None of these policies have been accepted as general standard

Importance of pre- and post-test counselling

Recommendations post-test genetic counselling

- In case of (likely) pathogenic mutations, provide more information on the associated disease and if possible, on prognosis and possibilities for (change of) management. Also mention the patient advocacy groups for the specific disease(s)
- Discuss recurrence risks and possibilities for family planning, including reproduction options, such as prenatal diagnosis and pre-implantation genetic testing
- Discuss the potential implications of the genetic results for family members and, if applicable, mention the possibility of presymptomatic testing
- In case of returning VUS, discuss the need for additional investigations

Take home messages

- MPS-based gene panels and ES have increasingly found their place in routine clinical diagnosis of monogenic kidney diseases with important implications for diagnostic yield (end diagnostic odyssey) and management
- Predictors of high diagnostic yield are: family history, extrarenal features, young age of onset, kidney disease type (high in cystic kidney disease, ADTKD, tubulopathies, steroid-resistant nephrotic syndrome, low in CAKUT)
- Genetic testing: reclassification clinical/pathological diagnosis in 10-22% of cases
- Genetic testing may also be useful in CKD of unknown origin, with onset before age of 50 and when clear-cut non-genetic diagnosis has been excluded
- Management: disease specific treatment, renal protection, recurrence risk after transplantation, screening extrarenal manifestations, carrier screening, counseling and reproductive options
- Challenges in establishing pathogenicity of identified variants; data sharing and consulting updated variant databases and variant curation expert panels are essential
- Important ethical challenges; especially how to deal with VUSses and with unsolicited findings

Acknowledgments

University Medical Centre Utrecht

Nayia Nicolaou Anukrati Nigam Marijn Stokman Laura Claus les Nijman Bert van der Zwaag Edith Peters Kirsten Renkema Albertien van Eerde Bobby Koeleman Marc Lilien Eric Hennekam

Amsterdam University Medical Centre Liffert Vogt

Radboud University Medical Centre, Nijmegen Jeroen de Baaij Joost Hoenderop

University Medical Centre Groningen

Amber de Haan Martin de Borst Patrick Rump Mark Eijgelsheim

Recommendations on genetic testing in CKD team

Corinne Antignac Carsten Bergmann Karin Dahan Sabrina Giglio Laurence Heidet Beata Lipska-Ziętkiewicz Marina Noris Giuseppe Remuzzi Rosa Vargas-Poussou Franz Schaefer **First Faculty of Medicine Charles University (Prague, Czech Republic)** Martina Živna Stanislav Kmoch

Wake Forest School of Medicine (Winston-Salem, North Carolina) Kendrah Kidd Anthony Bleyer

ERKNet The European Rare Kidney Disease Reference Network

Franz Schaefer, Heidelberg

Controversies Conference on Genetics in CKD

