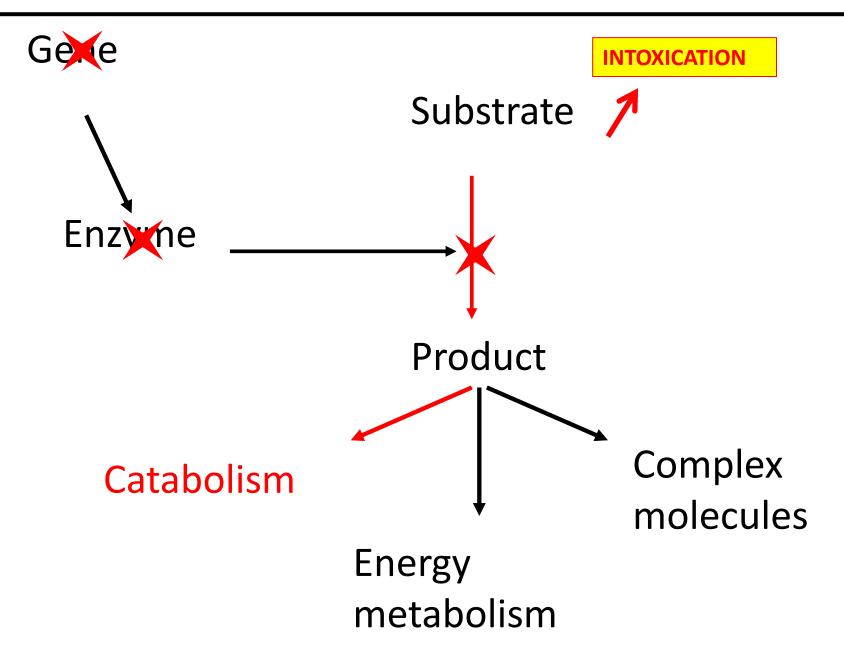
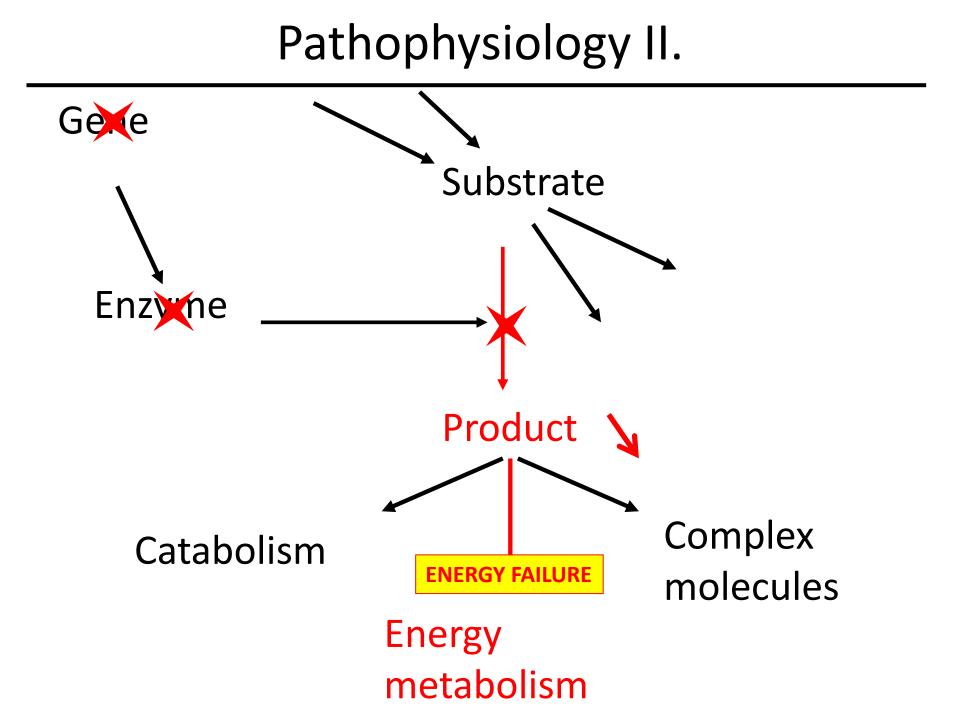
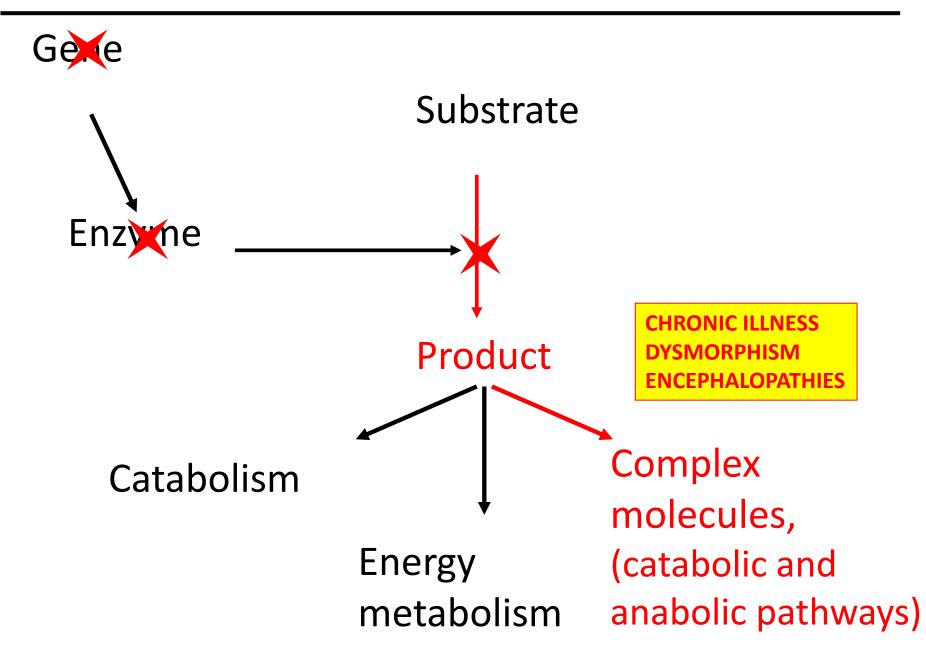

Inborn Errors of Metabolism: Introduction

François-Guillaume Debray Medical Genetics CHU & ULg, Belgium


Inherited Metabolic Diseases


- Wide heterogeneous group of genetic disorders associated with disturbancies of metabolic pathways caused by enzyme deficiencies (or transporter defects)
- Rare, but innumerable...
- Clinical heterogeneity: any organ or system may be involved
- Specificity: contrasting with most genetic conditions, many <u>IEM are treatable diseases</u>, which justifies attempt for early diagnosis (i.e. newborn screening)



Pathophysiology I.

Pathophysiology III.

Classification of IEM

• Intoxication type

Aminoacidopathies, hyperammonmia, organic aciduria, galactosemia, (fuctosemia),...

• Energy metabolism

 Glycogen storage diseases, glycolysis/neoglucogenesis defects, fatty acid oxidation disorders, ketogenesis/ketolysis defects, respiratory chain and mitochondrial diseases,...

Macromolecules diseases

 Lysosomal storage diseases, mucopolysaccharidosis, oligosaccharidosis, sphingolipidosis, peroxisomal diseases, congenital disorders of glycosylation,...

NB. Outside this classification : neurotransmitter metabolism, sterol metabolism, purine/pyrimidine and heme biosynthesis pathways, metal transport disorders...

IEM : pathophysiology and type of presentation

THERAPEUTIC DIET & DRUGS, URGENT

1. Intoxication: RA

RAPIDLY PROGRESSIVE FREE INTERVAL

2. Energetic failure: TRAITABLE : DIET,...

EMERGENCY !!! → OUTCOME !

THERAPEUTIC DIET & OTHERS, URGENT, FASTING AVOIDANCE

3. Macromolecules : VERY SLOW PROGRESSION

DYSMORPHOLOGY, STORAGE SYNDROME

SOMETIMES TRAITABLE: ENZYME REPLACEMENT THERAPY

THERAPEUTIC DIET & OTHERS, URGENT, FASTING AVOIDANCE

Intoxication: Free interval

- Symptom free period between birth and appearance of symptoms
- This the time for progressive accumulation of toxic metabolites. During pregnancy, the mother protects the baby by placental clearance of toxic metabolites
- So, at birth, baby is normal, has no dysmorphism, no malformation and no symptoms. Rapidly, he develops symptoms like hypotonia, feeding difficulties, vomiting, losing weight, dehydratation, abnormal movements or tones,...

IEM : pathophysiology and type of presentation

THERAPEUTIC DIET & DRUGS, URGENT

1. Intoxication: RA

RAPIDLY PROGRESSIVE FREE INTERVAL

2. Energetic failure: TRAITABLE : DIET,...

EMERGENCY !!! → OUTCOME !


THERAPEUTIC DIET & OTHERS, URGENT, FASTING AVOIDANCE

3. Macromolecules : VERY SLOW PROGRESSION

DYSMORPHOLOGY, STORAGE SYNDROME

SOMETIMES TRAITABLE: ENZYME REPLACEMENT THERAPY

THERAPEUTIC DIET & OTHERS, URGENT, FASTING AVOIDANCE

Manifestations of IEM

DISTURBED HOMEOSTASIS

- ✓ Acidosis
- ✓ Hypoglycemia
- ✓ Ketosis
- ✓ Hyperammonemia
- ✓ Coma
- ✓ ...

SYSTEMIC INVOLVEMENT

- ✓ Failure to thrive
- ✓ Hypotonia, weakness
- \checkmark Poor feeding, vomitting

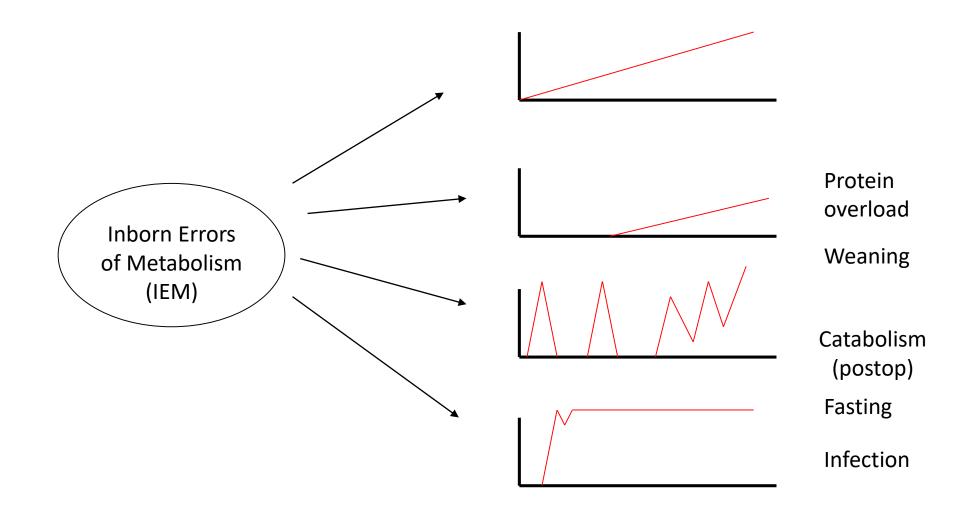
✓ Developmental delay, mental retardation, neurological deterioration

✓ Dysmorphism

SPECIFIC ORGAN DYSFUNCTIONS

✓ Liver : Glycogen storage disease,
Tyrosinemia, Galactosemi, Fructosmia,
Wilson disease, Fatty oxidation (Reyelike syndrome...)

 ✓ Cardiomyopathy : Mitochondrial disease, Glycogen storage disease, Fatty oxidation defects, Carnitine deficiency, Storage diseases...


✓ Kidney: Tyrosinemia, Oxalosis,
Cystinosis, Peroxisomal biogenesis,...

 \checkmark

IEM : clinical context

- 1. Presymtomatic diagnosis by newborn screening
- 2. Early acute symptoms in neonatal perdiod or early infancy
 - Intermediary metabolism, intoxication type or energetic, mainly neurological distress ± digestive signs and disturbed homeostasis
- 3. Later-onset acute or recurrent attack of symptoms
 - idem
- 4. Chronic and progressive generalized symptoms
 - Developmental delay, neurological signs, failure to thrive, digestive signs, (± storage phenotype)
- 5. Specific and permanent organ presentation
 - Hepatomegaly, liver disease, cardiomyopathy, lens dislocation...

Clinical courses in IEM

IEM intoxication type : general rules

- Free interval
 - Progressive product accumulation
 - Variable depending severity of enzyme deficiency
 - Variable depending feeding and anabolic state
- Signs of intoxication
 - Acute: neurological (vomitting, drowsines, ataxia, abnormal movements, coma...), (liver failure)
 - Chronic: developmental delay, mental retardation, failure to thrive, (organ::cataract, cirrhosis, cardiomyopathy),...
- Biological abnormalities
 - Acidosis, ketosis, hypo/hyperglycemia, hyperammonemia,...

IEM : Acute symptoms in the neonatal period

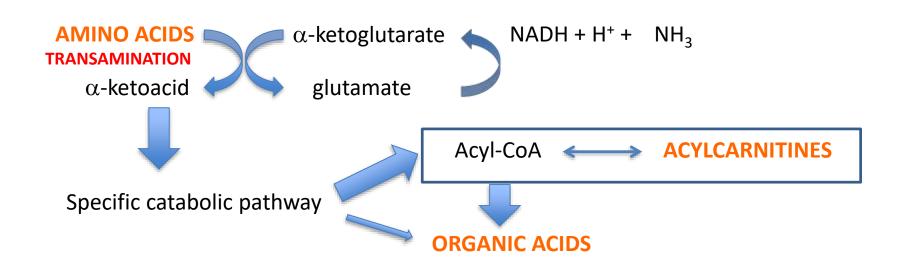
Highly suggestive picture

- Full term baby born after normal pregnancy and delivery, without malformation and dysmorphism, after an initial symptom-free period, relentlessly deteriorates for no apparent reason, and does not respond to symptomatic therapy
- Clinical signs
 - Hypotonia, poor sucking, vomiting, grunting, respiratory distress, lethargy, dehydratation, seizures...
- Differential
 - Sepsis !!!
 - Respiratory distress syndrome (wet lung)
 - Perinatal anoxoischemic injury
 - Traumatic delivery (intracranial hemorrage)
 - Congenital cardiopathy
 - Polymalformation syndrome, cerebral dysgenesis...
 - Major electrolyte disturbances

Consider IEM in parallel to other frequent disorders,

Especially if the baby does not respond to early therapeutic

Major types of metabolic distress in NN


Туре	Clinical phenotype	Ketoacidosis	Others	Most usual diagnosis
Ia)	Neurological deterioration	Acidosis -/±	NH₃N/±个	MSUD
	Intoxication type	Acetest -/±	Lactate N	
	Slow movements, hypertonia	DNPH +++	Glucose N	
b)	Neurological deterioration	Acidosis ++	NH ₃ 个+/++	Organic aciduria
	Intoxication type	Acetest ++	Lactate N/个+	(PA, MMA, IVA)
	Fast movements, dehydratation	DNPH +/±	Glucose N/个/↓	Ketolysis defects
			Cytopenia, hypoCa	
c)	Neurological deterioration	Acidosis –	NH₃个个个	Urea cycle defects
	Intoxication type	(alcalosis)	Lactate N/个+	Fatty acid oxidation
	Hypotonia seizures, coma	Acetest -	Glucose N	Organic aciduria
ll a)	Neurological deterioration	Acidosis++/±	NH ₃ 个±/++	Fatty acid oxidation
	Energy deficiency	Acetest -	Glucose ↓/↓↓↓	Ketogenesis defect
	± liver or cardiac symtoms		Hypoketotic hypogly	
b)	Neurological deterioration	Acidosis +/+++	NH₃N/±个	Congenital lactic acidosis
	Energy deficiency	Lactate +/+++	Glucose N/个/↓	PDH deficiency
	± liver or cardiac symtoms	Acetest ±/+	± anemia, RTA	Respiratory chain defects
	Neurological deterioration	Acidosis –	NH₃ N	Non ketotic hyperglycinemia, B6 resp. seiz,
	Predominant seizures	Acetest-	Lactate N/±个	Sulfite ox, Neurotransmitt, perox, CDG
IV	Recurrent hypoglycemia	Acidosis ++/-	Glucose ↓↓↓	<u>Glycogenosis I/III</u>
	With hepatomegaly	Acetest ±	Lactate ↑+/++	Fatty acid oxidation
			NH₃N/个+/++	Hyperinsulinism (hm, acetest-)
V a)	Hepatomegaly, jaundice,	Acidosis ±	NH₃N/±个	<u>Galactosemia, tyrosinemia</u>
	liver failure, necrosis	Ketosis ±	Lactate N/±个	Fructosemia, respiratory chain
b)	Cholestasis, Hepatomegaly	Acidosis -	NH _{3,} Lactate N	α1AT, bile acid metabolism,
	FTT, diarrhea, rickets	Ketosis -	Glucose N	cholesterol metab, NPC, Gala, Tyr, Fru
c)	Hepatosplenomegaly, storage	-	_	Lysosomal, perox, CDG

Adapted from Saudubray

Diagnosis: first line investigations

- Glycemia
- pH
- Electrolytes, anion gap : $[Na^+] [C^{l-}] [HCO_3^{--}] = 8 16 \text{ mEq/L}$
- Urines : ketostix, glucose, pH
- Blood lactate : < 2 mmol/L (x10 to convert mg/dl)
 - Venous sampling is informative in most cases, but sensitive to spurious elevation in venous stasis or if the child struggles during sample (sometimes, prefer venous catheter)
 - Secondary increase caused by hypoxia, hypoperfusion shock, sepsis cardiac failure
 - Does not alter pH by itself if < 5 mmol/L
 - May be more informative in cerebrospinal fluid (in context of suspicion of mitochondrial disease)
- Blood NH₃ : < 80 μ mol/L (x1.7 to convert μ g/dl) (until 120 in nn)
 - Uncuffed venous sampling informative, on ice, rapid analysis because spontaneous increase (glutaminase); spurious increase in venous stasis or damaged tissues (no micromethods for sampling)
- (Urinary DNPH)

Diagnosis: second line investigations

- Aminoacid chromatography: in blood
- Organic acid chromathography : in urine
- Acylcarnitine profile: in blood

Acute metabolic distress: first line treatment

- ABC : vital functions
- Correct hypoglycemia if present
- IV Glucose 10%
- Correct dehydratation, monitoring ions
- STOP Proteins
- Vitamine cocktail: hydroxocobalamine 1 mg IV, biotine 30 mg po, thiamine 50 mg PO, pyridoxine 100 mg, riboflavine 100 mg
- Collect specimen for specialized analyses

• NH_3 : < 80 µmol/L (x 1,7 = µg/dL)

healthy nn <110 μM; sick nn (sepsis, respiratory distress) : up to 180 μM glutaminase in blood: artifactual 个 NH₃ if delay in analysis artifactually 个 if poor sampling conditions (venous blood) sample, on ice rapidely analysed in lab (result should be avaiable < 30 minutes) NEVER FALL ASLEEP ON AN ABNORMAL NH₃ RESULT

• Lactate: < 2,2 mmol/L (x 10 = mg/dL)

artifactually 个 in stasis, difficult sample, crying/struggling baby physiological 个 in case of hypoperfusion (shock, sepsis, cardiac failure...) May be more accurate in CSF