

PGT for chromosomal abnormalities.

Pieter Verdyck, PhD. BeSHG course 2021 - 2022

Universitair Ziekenhuis Brussel

Outline

- PGS vs PGD, PGT-A vs PGT-SR
- Technologies
 - \rightarrow FISH
 - → Array CGH
 - → Shallow Genome Sequencing
 - \rightarrow SNP array
 - → Genotyping by sequencing
- Segregations of translocations

Outline

- PGS vs PGD, PGT-A vs PGT-SR
- Technologies
 - \rightarrow FISH
 - → Array CGH
 - → Shallow Genome Sequencing
 - \rightarrow SNP array
 - → Genotyping by sequencing
- Segregations of translocations

Former nomenclature

• PGD = Preimplantation genetic diagnosis

- \rightarrow Couples at increased genetic risk
- → Abnormal karyotype with numerical or structural chromosomal abnormality
- → Couples are often fertile but PGD requires ICSI as part of the procedure
- \rightarrow First birth by Handyside et al. (1990).

• PGS = Preimplantation genetic screening

- → Couples at population risk (cave female age)
- → In couples requiring IVF, performed to improve IVF outcome
- → Introduced by Verlinsky et al., 1995; Munné et al., 1996

Revised nomenclature

PGD - structural -> PGT-SR
PGD - numerical
PGS -> PGT-A

PGT-A: indications

• Former PGS

\rightarrow Couple has a normal karyotype

- Recurrent implantation failure
- Recurrent abortion
- Advanced maternal age
- Antecedents trisomy

• Numerical abnormalities (rare indication).

- \rightarrow 47,XXX; 47,XXY, 47,XYY
- → Mosaic 45,X/46,XX
- → Germline mosaic

PGT-SR: indications

- Balanced structural rearrangements
 - \rightarrow Reciprocal and Robertsonian translocations
 - \rightarrow Paracentric and pericentric inversions
 - \rightarrow Insertions (rare indication)
- Unbalanced structural rearrangements
 - \rightarrow Deletions, duplications
 - → Unbalanced reciprocal translocations (rare indication)

Outline

• PGS vs PGD, PGT-A vs PGT-SR

- Technologies
 - \rightarrow FISH
 - → Array CGH
 - → Shallow Genome Sequencing
 - \rightarrow SNP array
 - → Genotyping by sequencing
- Segregations of translocations

-Fluorescent *In-situ* Hybridization: hybridization of fluorescently labelled probes directly onto a fixed nucleus.

- -One to three FISH hybridization rounds are possible (wash and hybridize again)
- -Up to ~12 probes

-Oldest technique for chromosomal PGT

FISH:principle

Multi - color FISH 1 \rightarrow 3 consecutive FISH procedures

PGD- FISH cycle: day 3 biopsy

Example FISH - 46,XX,del(22)(q11.21q11.21)

Workup

- → 10 Metaphase nuclei
- → 100 Interphase nuclei

Round 1:

22q11.2 probe (Vysis, LSI TUPLE 1, Orange) 22q13.3 probe (Vysis, LSI ARSA, Green)

Round 2 (not shown):

PGT-kit 13q14 Red 18p11.1-q11.1 Alpha Satellite DNA Aqua 21q22.13-21q22.2 Green Xp11.1-q11.1 Alpha Satellite DNA Blue Yp11.1-q11.1 Alpha Satellite DNA Gold

Example FISH - 46,XX,del(22)(q11.21q11.21)

• PGD

 \rightarrow Embryo inherited del(22)(q11.21q11.21)

Strengths and limitations of FISH

• Strengths:

- → Structural rearrangements with small unbalanced segments can be diagnosed.
- → Haploidy and polyploidy can be detected

• Limitations:

- → Often patient-specific workup required
- → Often subjective interpretation (low signal to background). Frequent FISH errors (splitting or overlapping signals)
- → Few chromosomes are tested (probemix)
- \rightarrow Uniparental disomy (UPD) is not detected.
- → Not useful for duplications
- \rightarrow Normal and balanced segregations are not

distinguishable

Outline

• PGS vs PGD, PGT-A vs PGT-SR

Technologies

 \rightarrow FISH

\rightarrow Array CGH

- → Shallow Genome Sequencing
- \rightarrow SNP array
- → Genotyping by sequencing
- Segregations of translocations

Array CGH

 \rightarrow

- \rightarrow Deletion sample 1; theoretical log2R = -1
- If is sample 2 is normal reference In Cy5 (red)

- Duplication sample 1; theoretic log2R = 0,58
- \rightarrow Normal sample 1; theoretical log2R = 0

Example 46,XX

Strengths and limitations of aCGH

• Strengths:

- → No patient-specific workup required
- → All chromosomes are tested
- \rightarrow Straightforward interpretation

• Limitations:

- \rightarrow Uniparental disomy (UPD) is not detected.
- → Normal and balanced segregations are not distinguishable
- → Structural rearrangements with small exchanged segments (<10 Mb) cannot be diagnosed.</p>
- \rightarrow Haploidy and polyploidy cannot be detected
- → Main supplier abruptly ceased production

Outline

• PGS vs PGD, PGT-A vs PGT-SR

Technologies

- \rightarrow FISH
- → Array CGH
- → Shallow Genome Sequencing
- \rightarrow SNP array
- → Genotyping by sequencing
- Segregations of translocations

Shallow Genome Sequencing

- A.k.a. low pass sequencing, low coverage NGS,..
- Massive parallel sequencing with low sequencing depth. Typically <0,3X or <10⁷ reads.
- The number of reads is counted between specified intervals; "bins" (e.g. 1Mb) and normalized (GC content).
- The number of reads is a measure for the number of copies present

PGT - Shallow Genome Sequencing

Our method

- \rightarrow Trophectoderm biopsy
- → Whole genome amplification (Sureplex Illumina)
- \rightarrow Bead cleanup
- → Library preparation (adding adaptors for sequencing) using KAPA HyperPlus (Roche)
- → Sequencing on NovaSeq (Illumina)
- → Data analysis

Strengths and limitations of SGS

• Strengths:

- → No patient-specific workup required
- → All chromosomes are tested
- → Straightforward interpretation
- \rightarrow Method of choice for copy-number detection (PGT-A).

• Limitations:

- \rightarrow Uniparental disomy (UPD) is not detected.
- → Normal and balanced segregations are not distinguishable
- → Structural rearrangements with small exchanged segments (<5 Mb) cannot be diagnosed.</p>
- \rightarrow Haploidy and polyploidy cannot be detected

Outline

• PGS vs PGD, PGT-A vs PGT-SR

Technologies

- \rightarrow FISH
- → Array CGH
- → Shallow Genome Sequencing
- \rightarrow SNP array
- → Genotyping by sequencing
- Segregations of translocations

SNP array - Illumina Karyomapping

SNP array - method

D Universitair Ziekenhuis Brussel

From signal to genotype

SNP array – example 46,XX,t(14;17)

Universitair Ziekenhuis Brussel

SNP array - example

SNP array - Balanced t(14;17) carrier

Strengths and limitations of SNPa

• Strengths:

- \rightarrow Uniparental disomy (UPD) can be detected.
- → Normal and balanced segregations can be distinguished
- → <u>Inherited</u> structural rearrangements with small exchanged segments (<5 Mb) can be diagnosed.</p>
- \rightarrow Haploidy and polyploidy can be detected
- \rightarrow All chromosomes are tested
- \rightarrow Detection of PGT-SR can be combined with PGT-M or A

• Limitations:

- → Workup is required. DNA samples from family members is required.
- → Sensitivity for detection of *de novo* duplications and trisomies depends on the quality of the array data and the platform used

Outline

• PGS vs PGD, PGT-A vs PGT-SR

Technologies

- \rightarrow FISH
- → Array CGH
- → Shallow Genome Sequencing
- \rightarrow SNP array
- \rightarrow Genotyping by sequencing
- Segregations of translocations

Genotyping by sequencing

- High coverage sequencing allows to determine genotypes
- Cost can be reduced by sequencing only part of the genome
 - → Exome sequencing
 - \rightarrow Reduced representation sequencing
- Similar data compared to SNP array
- Sequencing cost has been limiting use to date

Outline

- PGS vs PGD, PGT-A vs PGT-SR
- Technologies
 - \rightarrow FISH
 - → Array CGH
 - → Shallow Genome Sequencing
 - \rightarrow SNP array
 - → Genotyping by sequencing
- Segregations of translocations
 - → Robertsonian translocations
 - → Reciprocal translocations

- Robersonian translocation
 - → Fusion of long arms of 2 acrocentric chromosomes: 13, 14, 15, 21, 22
 - → Most often dicentric
 - \rightarrow der(13;14) most frequent (75%)
 - → Viable trisomies possible with Rob involving chromosomes 13 and 21. Highest risk for trisomy 21 pregnancy in female carriers (10-15%)
 - → Higher incidence of UPD (chr14 and 15), ~0,8%
 - \rightarrow 6 segregation products are expected
- Example 45,XX,der(13;14)(q10;q10)

Normal meiosis

bivalent

Adopted from Macmillanhighered.com

Segregations Rob - alternate

Universitair Ziekennuis Brussei

Segregations Rob - adjacent

Segregations Rob - adjacent

Outline

- PGS vs PGD, PGT-A vs PGT-SR
- Technologies
 - \rightarrow FISH
 - → Array CGH
 - → Shallow Genome Sequencing
 - \rightarrow SNP array
 - → Genotyping by sequencing
- Segregations of translocations
 - → Robertsonian translocations
 - → Reciprocal translocations

Reciprocal translocation

FIGURE 5-1 Reciprocal translocations demonstrating (*above*) double-segment and (*below*) single-segment exchange. The translocations are t(5;10)(p13;q23.3) and t(1;4)(q44;q31.3). (Cases of M. A. Leversha and N. A. Adams.)

Universitair Ziekenhuis Brussel

Reciprocal translocation

FIGURE 5-1 Reciprocal translocations demonstrating (*above*) double-segment and (*below*) single-segment exchange. The translocations are t(5;10)(p13;q23.3) and t(1;4)(q44;q31.3). (Cases of M. A. Leversha and N. A. Adams.)

Universitair Ziekenhuis Brussel

Normal meiosis

bivalent

Adopted from Macmillanhighered.com

Tetravalent

FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

Table 5–1.

ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYT WITH:	SEGREGATION MODE E
2.2 Segregations		
A and B	A' and B'	Alternate
A and D	It and D	segregation
A and B'	B and A'	Adjacent-1
Trund D	Dunan	segregation
A and A'	B and B'	Adjacent-2
		segregation
3.1 Segregations		00
A B A'	B'	3:1 segregation
	2	with
A B and B'	A'	tertiary trisomy
		or monosomy
A' B' and A	В	3:1 segregation
		with
A' B' and B	A	interchange
		trisomy or
		monosomy
4:0 Segregation		
A B A' B'	None	4:0 segregation
		with double
		trisomy or
		monosomy

44

Jniversitair Ziekenhuis Brusse

Tetravalent

FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

Table 5–1.

ONE DAUGHTER	OTHER	SEGREGATION
GAMETOCYTE	DAUGHTER	MODE
WITH:	GAMETOCYT	E
	WITH:	

2.2 Segreguilons	A/ 1D/	A 1
A and B	A and B	Alternate
		segregation
A and B'	B and A'	Adjacent-1
		segregation
A and A'	B and B'	Adjacent-2
		segregation
3:1 Segregations		
A B A'	B'	3:1 segregation
		with
A B and B'	A'	tertiary trisomy
		or monosomy
A' B' and A	В	3:1 segregation
		with
A' B' and B	А	interchange
		trisomy or
		monosomy
4:0 Segregation		
A B A' B'	None	4:0 segregation
		with double
		trisomy or
		monosomy
		monosomy

Jniversitair Ziekenhuis Brusse

Tetravalent

FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

Table 5–1.

ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYT WITH:	SEGREGATION MODE E
2.2 Sagragations		
A and B	A' and B'	Alternate
A and D	A and D	segregation
A and B'	B and A'	Adjacent-1
		segregation
A and A'	B and B'	Adjacent-2
		segregation
3:1 Segregations		
A B A'	Β'	3:1 segregation with
A B and B'	A'	tertiary trisomy
		or monosomy
A' B' and A	В	3:1 segregation with
A' B' and B	A	interchange
		trisomy or
		monosomy
4:0 Segregation		
A B A' B'	None	4:0 segregation
		with double
		trisomy or
		monosomy

Universitair Ziekenhuis Brusse

Tetravalent

FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

Table 5–1.

ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYT WITH:	SEGREGATION MODE E
2.2 Segregations		
A and B	A' and B'	Alternate
A and B'	B and A'	Adjacent-1
A and A'	B and B'	Adjacent-2 segregation
3:1 Segregations		segregation
A B A'	Β'	3:1 segregation with
A B and B'	A'	tertiary trisomy
A' B' and A	В	3:1 segregation with
A' B' and B	А	interchange
		trisomy or
		monosomy
4:0 Segregation		
A B A' B'	None	4:0 segregation with double
		trisomy or monosomy

47

niversitair Ziekenhuis Brusse

Tetravalent

FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

Table 5–1.

ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYT WITH:	SEGREGATION MODE E
2.2 Segregations		
A and B	A' and B'	Alternate
It und D	11 unu D	segregation
A and B'	B and A'	Adjacent-1
		segregation
A and A'	B and B'	Adjacent-2
		segregation
3:1 Segregations		
A B A'	Β'	3:1 segregation with
A B and B'	A'	tertiary trisomy
	-	or monosomy
A' B' and A	В	3:1 segregation with
A' B' and B	Α	interchange
		trisomy or
		monosomy
4:0 Segregation		
A B A' B'	None	4:0 segregation
		with double
		trisomy or
		monosomy

.

niversitair Ziekenhuis Brusse

->Adjacent 1 segregation

- 1 derivative maternal chromosome 1 (A')
- 1 normal maternal chromosome 8 (B)
- -> translocated segment on chr1 deleted

$$> \text{Log}_2 \text{R} = -1$$

- -> translocated segment on chr 8 duplicated
 - $-> Log_2 R = 0.58$

-> Tertiairy monosomy

1 maternal derivative chromosome 1 (A') no maternal chromosome 8 (/)

SNP array – example 46,XX,t(14;17)

SNP array - Example

SNP array - Unbalanced

Tetravalent

FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

Table 5–1.

ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYT WITH:	SEGREGATION MODE E
2.2 Segregations		
A and B	A' and B'	Alternate
A and D	It and D	segregation
A and B'	B and A'	Adjacent-1
		segregation
A and A'	B and B'	Adjacent-2
		segregation
3:1 Segregations		
A B A'	Β'	3:1 segregation with
A B and B'	A'	tertiary trisomy
A' B' and A	В	3:1 segregation with
A' B' and B	A	interchange
		trisomy or
		monosomy
4:0 Segregation		
A B A' B'	None	4:0 segregation
		with double
		trisomy or
		monosomy

Universitair Ziekenhuis Brusse