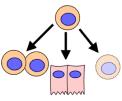
LE A ROLALBERT


Molecular basis of oncogenesis

Pr François Duhoux Medical Oncology and Clinical Genetics 11 February 2022

Cancer Biology : definition

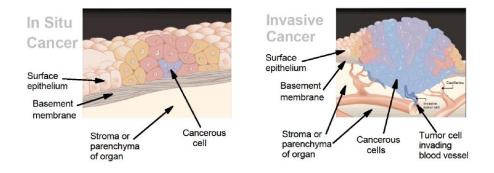
Somatic cell fates :

Division in 2 identical sister-cells = self-renewal

Cellular programmed death = apoptosis

Division and cellular differentiation = acquisition of specialised functions

Cancer:


disruption of the cellular homeostasis Imbalance between proliferation / differentiation / apoptosis

monoclonal proliferation

Abnormal proliferation of cells originating from a same ancestral cell

Cancer Biology : multi-step process

Normal tissue \rightarrow in situ tumor \rightarrow locally invasive cancer \rightarrow metastases

Malignant tumors = capable of invading neighboring tissues and/or spreading to more distant sites (metastasizing)

3

Cancer : heterogeneous disease

- 3 main forms of cancer according to the cell of origin :
 - Carcinomas : tumor arising in epithelial tissue 80-90%
 - Intestine, bronchi, mammary ducts, epiderma,...
 - · Sarcomas : tumor arising in mesenchymal tissue
 - tumor derived from muscle, bone, cartilage, fat or connective tissues,...
 - Hematological malignancies :
 - Leukemia : derived from bone marrow hematopoïetic precursors
 - Lymphoma : derived from lymphocytes responsible for the immune response
- Classification within each major group :
 - By site, tissue type, histological appearance, biological characteristics, degree of malignancy,...

4

Genetic basis of oncogenesis

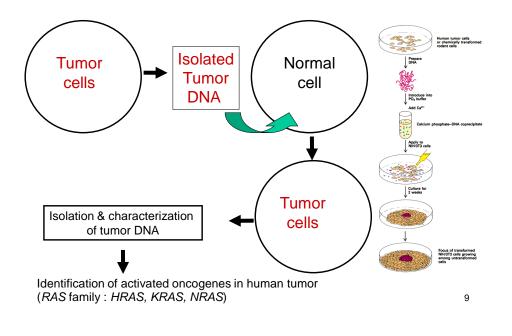
- 1. Tumorigenic retrovirus
- 2. Transfection of tumoral DNA
- 3. Cytogenetics
- 4. Inherited cancers

Genetic basis of oncogenesis

- 1. Tumorigenic retrovirus
- 2. Transfection of tumoral DNA
- 3. Cytogenetics
- 4. Inherited cancers

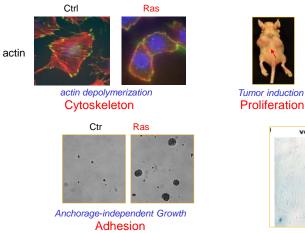
5

Tumorigenic retrovirus

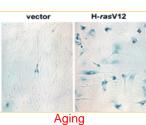

- 1900 : "filtrable" agents may induce chicken tumors • discovery of the Sarcoma Roux virus
- 1970 : transforming properties of viral DNA (v-SRC)
- 1976 : Nobel Prize Varmus & Bishop (Stehelin)
- Retrovirus : may induce cellular transformation
 - Sarcoma Rous virus → Sarcoma (chicken)
 - Abelson murine leukemia virus \rightarrow Sarcoma, Leukemia (mouse, cat)
- Isolation of viral oncogenes v-SRC, v-ABL,...
- v-SRC, v-ABL derived from host cellular sequences (SRC, ABL)
- Viral oncogenes have cellular normal counterpart named cellular proto-oncogenes, which may become tumorigenic when mutated
- Oncogenes induce dysregulation of normal cellular functions

7

Genetic basis of oncogenesis


- 1. Tumorigenic retrovirus
- 2. Transfection of tumoral DNA
- 3. Cytogenetics
- 4. Inherited cancers

Tumor phenotype transfer to normal cells due to DNA transfection


Activation of the RAS oncogenes involved in multiple cellular processes

RAS mutations in 15-20% of human tumors • 50% colorectal cancer 95% pancreatic cancer

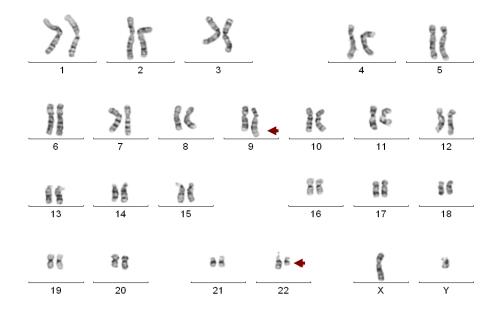
Proliferation

Ras Ctrl

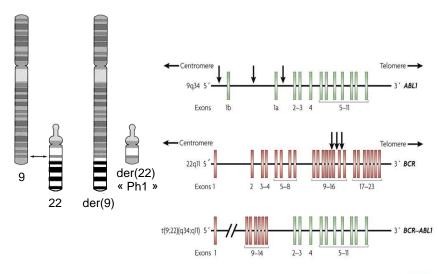
<u>bp</u> 2027 947

551

Apoptosis Survival


Genetic basis of oncogenesis

- 1. Tumorigenic retrovirus
- 2. Transfection of tumoral DNA
- 3. Cytogenetics
- 4. Inherited cancers

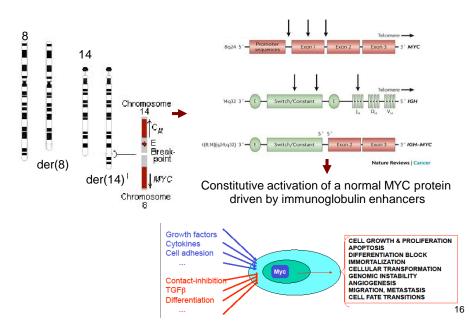

Genetic basis of oncogenesis (3) Chromosome rearrangements

- 1890: nuclear and mitotic alterations in cancer cells (Von Henseman)
- 1914: assumption that clonal chromosomal anomalies induce cellular malignant transformation (Boveri)
- 1956: human chromosome number (Tijo & Levan)
- 1960: marker chromosome Philadelphia in chronic myeloid leukemia CML- (Nowell & Hungerford)
- 1970: chromosome bands (Caspersson)
- 1970-...: discovery of multiple recurrent cytogenetic alterations, correlations between karyotypic aberrations, diagnosis and prognosis
- 1975-...: expansion of molecular biology, cloning of involved genes, functional studies (genes, proteins)
- 1990-...: therapeutic applications
- 2001: human genome cartography

Translocation leading to a chimeric gene t(9;22)(q34;q11) in CML

Translocation leading to a chimeric gene t(9;22)(q34;q11) in CML

Nature Reviews | Cancer


Translocation leading to a chimeric gene t(9;22)(q34;q11) in CML

Constitutive activation of a chimeric tyrosine kinase

Translocation leading to upregulation t(8;14)(q24;q32) in Burkitt lymphoma

Genetic basis of oncogenesis

1. Tumorigenic retrovirus

- 2. Transfection of tumoral DNA
- 3. Cytogenetics
- 4. Inherited cancers

Inherited cancers

- Most cancers sporadic
- +/- 5% of all cancers inherited
- Autosomal dominant inheritance
- Positional cloning (80's-90's) :
 - · identification of new cancer genes
 - usually, loss of function mutations
 - recessive
 - (dominant negative)
 - 2 types of tumor suppressor genes :
 - "Gatekeeper" = Cell control (TP53, RB) = tumor suppressor genes
 - Cell cycle control
 - Programmed cell death
 - "Care-taker" = Genome stability (ATM, MMR complex)
 - DNA repair
 - Carcinogen metabolism

Gatekeeper gene : Retinoblastoma

Sporadic retinoblastoma

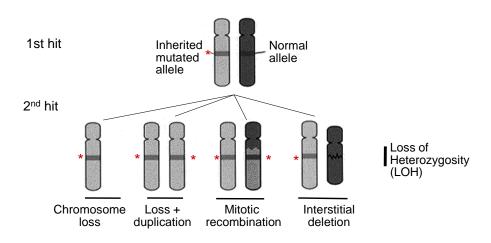
Unilateral tumor Single tumor Late-onset Inherited retinoblastoma (30%)

Bilateral tumor Multiple tumors Early-onset

> Inherited as a dominant trait High penetrance

1983 : 13q14 loss of heterozygosity 1986 : RB gene Bi-allelic inactivation of RB gene

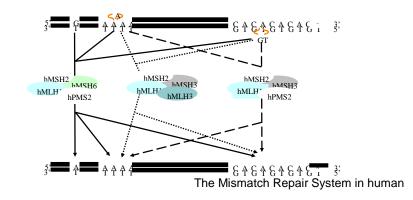
2 somatic mutations


1	germline predisposing mutation	
1	somatic mutation (risk : x1000)	

RB = gatekeeper tumor suppressor gene which controls the G1-S checkpoint Loss of RB : uncontrolled proliferation

19

Tumor suppressor genes Two-hit Knudson model (1971)


➢ Germline mutation → cancer predisposition (autosomal dominant inheritance)

> Second somatic mutation \rightarrow tumor development

> Theory expanded to sporadic cancer : 2 somatic mutations

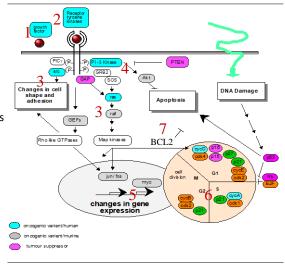
Caretaker gene : MMR

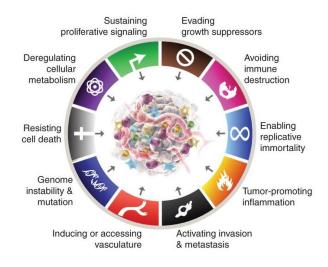
- Hereditary nonpolyposis colon cancer (HNPCC)
- High increase in
 - point mutations
 - · instability of repeated nucleotidic sequences
- Mutations in genes responsible for DNA repair

21

Main genes involved in inherited cancers

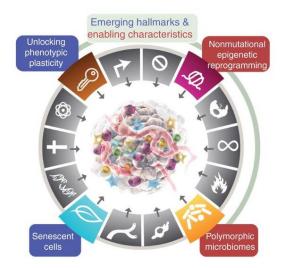
Cancer	Gene	Type of gene
Familial adenomatous polyposis Li-Fraumeni syndrome Retinoblastoma Wilms tumor	APC TP53 RB WT1	Gatekeeper Gatekeeper Gatekeeper Gatekeeper
Ataxia telengiectasia Fanconi anemia Xeroderma pigmentosum HNPCC	ATM FCA complex ERCC complex MLH1, MSH2, MSH6, PMS1, PMS2	Caretaker Caretaker Caretaker Caretaker
Breast cancer (familial form)	BRCA1, BRCA2, PALB2	Caretaker
Multiple endocrine neoplasia Papillary renal cancer GIST	RET MET KIT	Oncogene Oncogene Oncogene


2 categories of genes involved in cancer


23

Alteration of master genes for cellular homeostasis

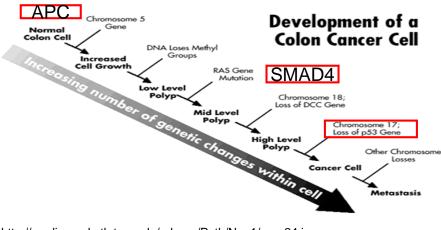
- 1. Growth factors (GF) and cytokines
- 2. GF receptors
- 3. (Sub-)membrane proteins
- 4. Cytosolic / sub-membrane kinase proteins
- 5. Nuclear transcription factors
- 6. Cellular cycle regulator proteins
- 7. Apoptosis regulator proteins



Cancer Biology : Multistep tumorigenesis *Not always in the same order*

Hanahan D, Cancer Discovery 2022 25

Cancer Biology : Multistep tumorigenesis *Not always in the same order*


Hanahan D, Cancer Discovery 2022 26

Mutations of these genes : tumor initiation and progression

- Usually mutation on a single somatic cell that then divides into daughter cells
 - present only in the tumoral cells
 - * monoclonality (subclonal)
 - * acquired mutation
- More rarely inherited mutation through germline present in every cell of the body
- ightarrow Strong positive selection for cell proliferation and survival caused by the mutations

Multistep genetic defects

• Accumulation of synergistic genetic damages through mutation in master genes

http://medic.med.uth.tmc.edu/edprog/Path/Neo1/neo-24.jpg

28

Cancer and the environment

- The risk of cancer varies
 - Among different populations
 - In different environments within the same population
- Exposure to mutagens and carcinogens in the environment → somatic mutations → carcinogenesis
 - Radiation
 - Ionizing radiation
 - UV
 - Chemical Carcinogens
 - Tobacco
 - Benzene
 - Components of the diet
 - Role of drug-metabolizing enzymes
 - Infectious agents
 - EBV, HTLV-I, HBV...

