Next Generation Sequencing

Wouter Bossuyt- BESHG 08/10/2021

Sequencing: a history

Landmarks in DNA sequencing

- 1911:
 - Thomas Hunt Morgan disproves himself and find chromoso
- 1944-1952
 - Avery-MacLeod-McCarty experiment (DNA in bacteria)
 - Hershey–Chase experiment (DNA in phages)
- 1953
 - Rosalind Franklin, Watson, Crick: Discovery of DNA double helix stru
- 1953-1977: the 'desperate' era
 - Walter Fiers use RNase digest in competition with Sanger
- 1977
 - A Maxam and W Gilbert "DNA seq by chemical degradation"
 - F Sanger"DNA sequencing with chain-terminating inhibitors"

(1 read/capillary)

Landmarks in DNA sequencing

- 1984
 - DNA sequence of the Epstein-Barr virus, 172 kb
- 1987
 - Applied Biosystems first automated sequencer
- 1991
 - Sequencing of human genome in Venter's lab
- 1996
 - P. Nyrén and M Ronaghi pyrosequencing
- 2001
 - A draft sequence of the human genome
- 2003
 - human genome completed
- 2004
 - 454 Life Sciences markets first NGS machine

ARTICLES

Genome sequencing in microfabricated high-density picolitre reactors

Marcel Margulies^{1*}, Michael Egholm^{1*}, William E. Altman¹, Said Attiya¹, Joel S. Bader¹, Lisa A. Bemben¹, Jan Berka¹, Michael S. Braverman¹, Yi-Ju Chen¹, Zhoutao Chen¹, Scott B. Dewell¹, Lei Du¹, Joseph M. Fierro¹, Xavier V. Gomes¹, Brian C. Godwin¹, Wen He¹, Scott Helgesen¹, Chun He Ho¹, Gerard P. Irzyk¹, Szilveszter C. Jando¹, Maria L. I. Alenquer¹, Thomas P. Jarvie¹, Kshama B. Jirage¹, Jong-Bum Kim¹, James R. Knight¹, Janna R. Lanza¹, John H. Leamon¹, Steven M. Lefkowitz¹, Ming Lei¹, Jing Li¹, Kenton L. Lohman¹, Hong Lu¹, Vinod B. Makhijani¹, Keith E. McDade¹, Michael P. McKenna¹, Eugene W. Myers², Elizabeth Nickerson¹, John R. Nobile¹, Ramona Plant¹, Bernard P. Puc¹, Michael T. Ronan¹, George T. Roth¹, Gary J. Sarkis¹, Jan Fredrik Simons¹, John W. Simpson¹, Maithreyan Srinivasan¹, Karrie R. Tartaro¹, Alexander Tomasz³, Kari A. Vogt¹, Greg A. Volkmer¹, Shally H. Wang¹, Yong Wang¹, Michael P. Weiner⁴, Pengguang Yu¹, Richard F. Begley¹ & Jonathan M. Rothberg¹

The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and *de novo* assembly of the *Mycoplasma genitalium* genome with 96% coverage at 99.96% accuracy in one run of the machine.

DNA Sequencing – the next generation

- NGS refers to non-Sanger-based high-throughput DNA sequencing technologies.
- NGS technologies constitute various strategies that rely on a combination of
 - Library/template preparation
 - Parallel sequencing

Different technologies

- 454
- Solexa/Illumina
- Ion Torrent/Thermo Fischer
- Nanopore
- Pacbio
- MGI
- ...

Roche 454

Solexa/Illumina

Ion torrent

Nanopore

Pacbio

Sequencing workflows

NGS workflow

What do I chose? Long read, short read,...

	Illumina	Nanopore	Pacbio
Read length	35 bp to 600 bp	Anything goes	250bp to 25kb (or 100kb)
Accuracy	High	Medium and improving	high
Capacity	Small to very large	Tiny to large	medium
Biases	Fragment size and GC		DNA modifications
Applications			
WGS	+++	++	+++
RNAseq	+++	+	++
Targeted resequencing	+++	Only large fragments	++
Single cell sequencing	+++		

Illumina (solexa) sequencing

 Illumina MiSeq, NextSeq 500, Nextseq2000, HiSeq4000 & NovaSeq 6000

Illumina flowcells

MiSeq

NextSeq500

0

NextSeq2000

NovaSeq

GENOMICS CORELEUVEN **S**4

- Indexing
 - $_{\circ}$ Sample barcodes
 - $_{\odot}$ High diversity necessary
 - $_{\odot}$ Unique dual indexing is

top

- General DNA library prep
- General RNA library prep
- Targeted library prep approaches

- General DNA library prep
- General RNA library prep
- Targeted library prep approaches

• Fragmentation

 \circ acoustic

covaris

- Fragmentation
 - quality check: BioAnalyser / FragmentAnalyser

• Standard A-tailing & adaptor-ligation (DNA/RNA)

- Illumina Nextera tagmentation
- Transposon-based adapter insertion
- PCR-based indexing

- General DNA library prep
- General RNA library prep
- Targeted library prep approaches

• General DNA library prep

• General RNA library prep

• Targeted library prep approaches

• Illumina TruSeq Stranded mRNA

LexoGen QuantSeq (RNA)

- General DNA library prep
- General RNA library prep
- Targeted library prep approaches

- General DNA library prep
- General RNA library prep
- Targeted library prep approaches
 - \circ amplicon based
 - $_{\circ}$ ligation based
 - $_{\circ}$ enrichment based

• Custom two step PCR

• MIPs

NGS Enrichment

• Sequence capture

KU LEUVEN

Illumina sequencing

NGS Illumina Clustering

Single-stranded molecule flips over and forms a bridge by hybridizing to adjacent, complementary primer

Double-stranded bridge is formed

Double-stranded bridge is denatured

Result: Two copies of covalently bound single-stranded templates

Single-stranded molecules flip over to hybridize to adjacent primers

Hybridized primer is extended by polymerase

Bridge amplification cycle repeated until multiple bridges are formed

dsDNA bridges are

denatured

Reverse strands cleaved and washed away, leaving a cluster with forward strands only

Free 3' ends are blocked to

prevent unwanted DNA

priming

to adapter sequence

42

• Sequencing By Synthesis (SBS)

Imaging MiSeq, HiSeq4000

Imaging NextSeq500, Nextseq2000* NovaSeq

Green Image

• Different SBS dyes

Intermediate chemistry step

• Paired-end sequencing

Illumina sequencing QC

Quality Control

Run Summary

Level	Yield Total (G)	Projected Total Yield (G)	Aligned (%)	Error Rate (%)	Intensity Cycle 1	% >= Q30			
Read 1	0,3	0,3	33,59	1,76	76	95,3			
Read 2 (I)	0,0	0,0	0,00	0,00	77	64,9			
Read 3 (I)	0,0	0,0	0,00	0,00	379	97,2			
Read 4	0,3	0,3	33,07	1,79	100	Phred G) Uality	Probability of	Base Call
Total	0,6	0,6	33,33	1,78	158	Sco	re	Incorrect Base Call	Accuracy
						10		1 in 10	90%
						20)	1 in 100	99%
						30)	1 in 1,000	99.9%
						40		1 in 10,000	99.99%
						50)	1 in 100,000	99.999%

Q30 by cycle

Run Folder: Z:\HiSeq\210315\NextSeq\FCA\210315_NB501171_0668_AHCKWYBGXH

Quality Control

Run Summary

Level	Yield Total (G)	Projected Total Yield (G)	Aligned (%)	Error Rate (%)	Intensity Cycle 1	% >= Q30
Read 1	0,3	0,3	33,59	1,76	76	95,3
Read 2 (I)	0,0	0,0	0,00	0,00	77	64,9
Read 3 (I)	0,0	0,0	0,00	0,00	379	97,2
Read 4	0,3	0,3	33,07	1,79	100	88,3
Total	0,6	0,6	33,33	1,78	158	91,5

Read 1

Lane	Tiles	Density (K/mm2)	Cluster PF (%)	Phas/Prephas (%)	Reads (M)	Reads PF (M)	% >= Q30	Yield (G)	Cycles Err Rated	Aligned (%)	Error Rate (%)	Error Rate 35 cycle (%)	Error Rate 75 cycle (%)	Error Rate 100 cycle (%)	Intensity Cycle 1
1	2	877 +/- 6	94,89 +/- 1,62	0,108 / 0,078	1,23	1,16	95,3	0,3	250	33,59 +/- 0,22	1,76 +/- 0,03	0,16 +/- 0,08	0,20 +/- 0,08	0,26 +/- 0,06	76 +/- 8

Read 2 (I)

Lane	Tiles	Density (K/mm2)	Cluster PF (%)	Phas/Prephas (%)	Reads (M)	Reads PF (M)	% >= Q30	Yield (G)	Cycles Err Rated	Aligned (%)	Error Rate (%)	Error Rate 35 cycle (%)	Error Rate 75 cycle (%)	Error Rate 100 cycle (%)	Intensity Cycle 1
1	2	877 +/- 6	94,89 +/- 1,62	0,000 / 0,000	1,23	1,16	64,9	0,0	0	0,00 +/- 0,00	0,00 +/- 0,00	0,00 +/- 0,00	0,00 +/- 0,00	0,00 +/- 0,00	77 +/- 0

Read 3 (I)

Lane	Tiles	Density (K/mm2)	Cluster PF (%)	Phas/Prephas (%)	Reads (M)	Reads PF (M)	% >= Q30	Yield (G)	Cycles Err Rated	Aligned (%)	Error Rate (%)	Error Rate 35 cycle (%)	Error Rate 75 cycle (%)	Error Rate 100 cycle (%)	Intensity Cycle 1
1	2	877 +/- 6	94,89 +/- 1,62	0,000 / 0,000	1,23	1,16	97,2	0,0	0	0,00 +/- 0,00	0,00 +/- 0,00	0,00 +/- 0,00	0,00 +/- 0,00	0,00 +/- 0,00	379 +/- 6

Read 4

Lane	Tiles	Density (K/mm2)	Cluster PF (%)	Phas/Prephas (%)	Reads (M)	Reads PF (M)	% >= Q30	Yield (G)	Cycles Err Rated	Aligned (%)	Error Rate (%)	Error Rate 35 cycle (%)	Error Rate 75 cycle (%)	Error Rate 100 cycle (%)	Intensity Cycle 1
1	2	877 +/- 6	0/ 20 +/- 1 62	0 147 / 0 068	1 23	1 16	88.3	03	250	33 07 +/- 0 61	1 79 +/- 0 01	0 20 +/- 0 10	0 25 +/- 0 08	0 30 +/- 0 06	100 +/- 5

Optimal loading

Duplicates

Common loss in Illumina

- Insufficient coverage: suboptimal loading
- Low complexity library
- Overloading
- Repeats
- Duplicates
- Too short fragment size
 - Overlap
 - High % adapter
- Low Q30

Metrics Picard – coverage technical target

Metrics Picard – uniformity

% TARGET BASES at ..x

Metrics Picard – Excluded bases

GC106397_40M GC106411_40M GC106414_40M GC107862_40M GC107863_40M GC107864_40M GC107865_40M GC107866_40M GC107867_40M GC107868_40M GC106393_40M GC106394_40M GC106395_40M GC106396_40M GC106398_40M GC106399_40M GC106400 GC106402_40M GC106403_40M GC106404_40M GC106405_40M GC106406_40M GC106407_40M GC106408_40M GC106409_40M GC106410_40M GC106412_40M GC106413_40M GC107861_40M GC106392_40M GC106401_40M

CORELEUVEN

IGV screenshot of part of TRDN (chr6:123,247,689-123,284,977)

	chr6 p25.2 p24.3 p23	p22.3 p22.2 p21.33	p21.2 p21.1 p12.3	p12.1 p11.1 q12	q13 q14.1 q14.2	q15 q16.1	q16.3 q21	q22.1 q22.31	q22.33 q23.2 q2	24.1	q24.3 c	q25.2 q25.3 q26	q27	
INDIN				123.260 kb 	37 k	b	123.270 kb	1			123.280 kb 			
GC106%2FG Coverage	[0 - 118]										A			0
GC106351 70°C – 1h hyb	-				1								1	
GC106%2FG Coverage	[0 - 141] 			0 0 00			<u> </u>							0
GC106359 70°C – 30' hyb	:													
GC107%2FG Coverage	[0 - 132]				<u> </u>					_				0
GC107853 57.5°C – 1h hyb			1 10 Control 1 1 10 Control 1					PRODUCTION DESCRIPTION PRODUCTION DESCRIPTION PRODUC						
GC107%2FG Coverage	[0 - 190]	<u> </u>	<u> </u>	A A.	10000	<u> </u>				.				1
GC107861 55°C – 1h hyb														
GC107%2FG Coverage	[0 - 169]				<u> </u>		<u> </u>							
GC107869 62.5°C – 1h hyb														
Gene	< < < < <						<u> </u>		· · · · · ·	4 (ex26	· · · · · ·		1

Oxford Nanopore sequencing

Tether keeps DNA fragment on the membrane leading to a \sim 20K fold higher DNA concentration close to the pore.

Motor protein unwinds DNA and ratchets it though the pore.

Abasic nucleotides in the hairpin are a recognition point.

Brake protein prevents the motor protein from zipping through the complement strand.

- Data acquired as full length reads real time
- Data throughput = No. pores x average speed/pore

mile.	Athe	IN MUL	14the	MMUNAN	Wallway	w/Multa
WMW.	NAME	MM	MAN	WHIT	MANALAM	In the work
1444 Mar	manuthan a	Maluty	N ^{MUML}	WYTHE	NOW	WMMM
MAL .	MA.	the man	at the	MM	ma	W-MONTAGL
MAMAL .	NMMML	NAME	MUL	MMM.	NVMML	WHAT WE
hombu	N ^W AL	North	NOMAN	MAL	MMAL	MNM M
vanitine.	MAL	NAMEN	WAY UNA	44MM	NAMATINA	May man

From squiggles to sequencing

- New basecaller: extract more correct information from squiggles
- Training of base caller for methylation data

Figure 1: Raw read accuracy of Bonito basecaller on the human reference genome NA12878 against high-accuracy Guppy, currently integrated into MinKNOW onboard nanopore devices.

Run QC on Nanopore

- Every flowcell is different
- Nuclease wash (and refueling) increases output

Mux Scan Categorised

Cumulative Output Reads

Translocation speed and pore status

Translocation Speed

Run QC on Nanopore

- Q-score need to be stable
- New flowcell chemisty improves Q-score
- Barcode selection → select high quality door

SMRT Sequencing

Pacific Biosciences
 PacBio Sequel IIe

SMRT[®] Technology

Time 🖚

Template Run Polymerase Instrument Primary Secondary Tertiary Preparation Design Binding Run Analysis Analysis Analysis

Template preparation

Universal SMRTbell[™] Template

- Recommended Insert Size: > 3 kb
- Maximum length over 300 kb

Generates one pass on each molecule sequenced

Circular Consensus Sequencing (CCS)

- Small Insert Sizes
- Recommended Insert Size: 500 bp-20kb

Continued generation of reads per insert size

Generates multiple passes on each molecule sequenced

SMRT[®] Sequencing Accuracy

Benefits of SMRT[®] Sequencing

- Produce reads with average lengths of 6000 to 10000, with longest reads over 175,000 base pairs
- Greater than 99.999% (QV 50) accurate sequencing results
- Sensitivity to detect minor variants at frequency less than 0.1%
- Detect broad spectrum of base modification events in the same sequencing run that reads canonical base sequence
- No amplification bias and least GC bias for improved coverage uniformity

NGS Applications

NGS as a tool for studying genome variation and regulation

RNA	Franscription	RNA Structure	Methylation
ChIRP-S			B5-Seq WGBS the set of generations programming and provided the set of the se
GRO-sec		Mont Translation Address Tra	EpiGoone* Methyl-54g India convecto as withortow nationareas convector to convector
Ribo-Sec ARTseq**	$ \begin{array}{c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $		REB5 550 Mentor to the second
RIP-Seq	Image: space of the s	FrapSeq + + + + + + + + + + + + + + + +	PBAT method data white is a first provide an and a second
HITS-CLI CLIP-Sec	p	ngentingenty effektigtene netaratedyten netar net	T-WG85 Vertical and the second
PAR-CLI	Un construction (Construction) → Description Banchender Banc	Carpone Diff - + - + - + - + - + - + - + - <	annaha Unitariah ang A
ICLIP	Antibiotical involution of the second		the late was to be provided to be p
NET-Seq		ICE extential manufacture constraints and cons	MeDIP-Seq withful no stratege withdoton statege statege to perfait as pipelin service to the second statege statege statege as a statege sta
TRAP-Se			NethylCap Seg HBDCap Seg ugind rink bldfan ungind rink bldfan ungin bldfan ungind rink bldfan ungind
	rapind perfaction of releases over and even reversification cover.	No. of the second se	DNA Back in Television
CLASH	andre de la contraction de la	Sequence Kearrangements	Diase Seq M. M. M. M. M. M. M. M. M
PARE-Se GMUCT	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	en e	MAINE-Soq Maine in Mark Julian Anno Julian Anno <thjulian anno<="" th=""> <thjulian anno<="" th=""></thjulian></thjulian>
TIF-Seq PEAT		adaptibility and and participanty and participanty	CMP-560 August A
DNA	naka fanya kana naka	ving nadrodim samitibas fakti nal urtas jaja kan arisandirtu pas aphronyentig and danasi -Adolah utasamang	FAIRE-Seq Marine constrained Marine constra
Digital R		DNA Low-Level Detection	ATLASE MAR + Mar + Mar + ==
	unique noise la bioculeura addrá diversa serativa man unique totación diversa serativa and diversa serativa man a serativa serativa targen y patientala targen y patientala targen y patientala targen y patientala targen y patientala targen y patientala		naufer magnadi nondila opin con me magna nati kanjan digan davada naganadardiptent penjerlatan sen davada
Quartz-5	22 mm → m		
DP-Seq	Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	PLDA white databases while databases which are the set of the set	ikher o esta manga sa
Smart-se	ett ander sont ander s		
Smart-se	All and a second	ingi an anizato osa panasa <u>nagan</u> <u>una</u> unitar ingi	50
UMI Met	od name and name and a state of the state o	OS-See elements in the set of the	4.5 Linterio distributivati di constituziona antico di constituziona antico di constituzione di constituz
CEL-Seq		forsit real-top-policity, and vertice and vertice and real second and real sec	a contention thread to prove the second seco
STRT-Se		Pr/ Danka spite spit	mathylation Acar have a systematic and a

DNA

Targeted resequencing

- Amplicon
- MIPs
- Capture panels
- *de novo* assembly
- Bacterial WGS
- Vertebrate WGS
- Long read sequencing

Truseq stranded mRNA

- Lexogen quantseq
- IsoSeq (Pacbio)

Single cell genomics

 Various single cell library prep methods for DNA and RNA

Whole genome sequencing

- Copy number variation analysis
 - Sequencing a genome at 0.1-0.3x
 - Sequencing a genome at 1-3x
- Structural variation analysis
 - Sequencing a genome at 5-10x
- Whole genome re-sequencing
 - Sequencing a genome at >30x
 - yeast, fruit fly, bacterial genomes, human...

De novo assembly

- Assembling a genome from scratch
- Extremely computationally heavy
- No reference to distinguish variation from artefacts
- Combination of multiple sequencing and optical mapping techniques required

RNA SEQUENCING

• Rapid expression profiling, transcriptome sequencing and small RNA's

RNAseq library preps

	Differential expression	Whole transcript, fusion, isoforms	Small RNA	Illumina compatible	Low input
Lexogen QuantSeq 3' mRNA	\checkmark			\checkmark	\checkmark
Lexogen Small RNA seq	\checkmark		\checkmark	\checkmark	\checkmark
Illumina TruSeq stranded mRNA	\checkmark	\checkmark		\checkmark	
Illumina TruSeq stranded total RNA	\checkmark	\checkmark	\checkmark	\checkmark	
IsoSeq	(✔)	\checkmark			
Smart-Seq2	\checkmark	\checkmark		\checkmark	$\sqrt{\sqrt{\sqrt{1}}}$

Single cell RNA-seq as a complementary technique to bulk RNA-seq

	RNA type	Transcript targeted	sensitivity	throughput	sequencing	Specific property
SMART SEQ2	mRNA	full transcript	sensitive	low	deep	FACS sorting specific populations
10x genomics 3' RNA seq	mRNA	3' end	medium	High (> 10000)	shallow	Can be combined with surface markers

ATAC + RNA - seq

10x variations

Spatial transcriptomics

